Size Dependence of Doping by a Vacancy Formation Reaction in Copper Sulfide Nanocrystals.
نویسندگان
چکیده
Doping of nanocrystals (NCs) is a key, yet underexplored, approach for tuning of the electronic properties of semiconductors. An important route for doping of NCs is by vacancy formation. The size and concentration dependence of doping was studied in copper(I) sulfide (Cu2 S) NCs through a redox reaction with iodine molecules (I2 ), which formed vacancies accompanied by a localized surface plasmon response. X-ray spectroscopy and diffraction reveal transformation from Cu2 S to Cu-depleted phases, along with CuI formation. Greater reaction efficiency was observed for larger NCs. This behavior is attributed to interplay of the vacancy formation energy, which decreases for smaller sized NCs, and the growth of CuI on the NC surface, which is favored on well-defined facets of larger NCs. This doping process allows tuning of the plasmonic properties of a semiconductor across a wide range of plasmonic frequencies by varying the size of NCs and the concentration of iodine. Controlled vacancy doping of NCs may be used to tune and tailor semiconductors for use in optoelectronic applications.
منابع مشابه
Switching between Plasmonic and Fluorescent Copper Sulfide Nanocrystals
Control over the doping density in copper sulfide nanocrystals is of great importance and determines its use in optoelectronic applications such as NIR optical switches and photovoltaic devices. Here, we demonstrate that we can reversibly control the hole carrier density (varying from >1022 cm-3 to intrinsic) in copper sulfide nanocrystals by electrochemical methods. We can control the type of ...
متن کاملAlloyed Copper Chalcogenide Nanoplatelets via Partial Cation Exchange Reactions
We report the synthesis of alloyed quaternary and quinary nanocrystals based on copper chalcogenides, namely, copper zinc selenide-sulfide (CZSeS), copper tin selenide-sulfide (CTSeS), and copper zinc tin selenide-sulfide (CZTSeS) nanoplatelets (NPLs) (∼20 nm wide) with tunable chemical composition. Our synthesis scheme consisted of two facile steps: i.e., the preparation of copper selenide-sul...
متن کاملNontoxic and abundant copper zinc tin sulfide nanocrystals for potential high-temperature thermoelectric energy harvesting.
Improving energy/fuel efficiency by converting waste heat into electricity using thermoelectric materials is of great interest due to its simplicity and reliability. However, many thermoelectric materials are composed of either toxic or scarce elements. Here, we report the experimental realization of using nontoxic and abundant copper zinc tin sulfide (CZTS) nanocrystals for potential thermoele...
متن کاملSynthesis and Characterization of Copper Indium Sulfide Chalcopyrite Structure with Hot Injection Method
In this investigation, CuInS2 ternary compound was synthesized by injection of thiourea solution into a hot copper-indium solution. The CuCl, InCl3 along with (SC (NH2)2) were used as a precursor dissolved in high boiling point solvent such as oleylamine (CH(CH2)17NH2) and oleic acid (CH(CH2)16COO...
متن کاملIn situ observation of divergent phase transformations in individual sulfide nanocrystals.
Inorganic nanocrystals have attracted widespread attention both for their size-dependent properties and for their potential use as building blocks in an array of applications. A complete understanding of chemical transformations in nanocrystals is important for controlling structure, composition, and electronic properties. Here, we utilize in situ high-resolution transmission electron microscop...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Angewandte Chemie
دوره 56 35 شماره
صفحات -
تاریخ انتشار 2017